STILP

Store-Release ordered Pair of registers calculates an address from a base register value and an optional offset, and stores two 32-bit words or two 64-bit doublewords to the calculated address, from two registers. For information on single-copy atomicity and alignment requirements, see Requirements for single-copy atomicity and Alignment of data accesses. The instruction also has memory ordering semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release, with the additional requirement that:

For information about addressing modes, see Load/Store addressing modes.

Integer
(FEAT_LRCPC3)

313029282726252423222120191817161514131211109876543210
1x011001000Rt2000x10RnRt
sizeLopc2

32-bit pre-index (size == 10 && opc2 == 0000)

STILP <Wt1>, <Wt2>, [<Xn|SP>, #-8]!

32-bit (size == 10 && opc2 == 0001)

STILP <Wt1>, <Wt2>, [<Xn|SP>]

64-bit pre-index (size == 11 && opc2 == 0000)

STILP <Xt1>, <Xt2>, [<Xn|SP>, #-16]!

64-bit (size == 11 && opc2 == 0001)

STILP <Xt1>, <Xt2>, [<Xn|SP>]

boolean wback = opc2<0> == '0';

STILP has the same CONSTRAINED UNPREDICTABLE behavior as STP. For information about this CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors, and particularly STP.

Assembler Symbols

<Wt1>

Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2>

Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP>

Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xt1>

Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2>

Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

Shared Decode

integer t = UInt(Rt); integer t2 = UInt(Rt2); integer n = UInt(Rn); constant integer scale = 2 + UInt(size<0>); constant integer datasize = 8 << scale; integer offset = if opc2<0> == '0' then -1 * (2 << scale) else 0; boolean tagchecked = wback || n != 31; boolean rt_unknown = FALSE; if wback && (t == n || t2 == n) && n != 31 then Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST); assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP}; case c of when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN when Constraint_UNDEF UNDEFINED; when Constraint_NOP EndOfInstruction();

Operation

bits(64) address; bits(64) address2; bits(datasize) data1; bits(datasize) data2; constant integer dbytes = datasize DIV 8; AccessDescriptor accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked); if n == 31 then CheckSPAlignment(); address = SP[]; else address = X[n, 64]; address = AddressAdd(address, offset, accdesc); if rt_unknown && t == n then data1 = bits(datasize) UNKNOWN; else data1 = X[t, datasize]; if rt_unknown && t2 == n then data2 = bits(datasize) UNKNOWN; else data2 = X[t2, datasize]; if IsFeatureImplemented(FEAT_LSE2) then bits(2*datasize) full_data; if BigEndian(accdesc.acctype) then full_data = data1:data2; else full_data = data2:data1; accdesc.ispair = TRUE; accdesc.highestaddressfirst = offset < 0; Mem[address, 2*dbytes, accdesc] = full_data; else address2 = AddressIncrement(address, dbytes, accdesc); if offset < 0 then // Reverse the memory write order for negative pre-index. Mem[address2, dbytes, accdesc] = data2; Mem[address, dbytes, accdesc] = data1; else Mem[address, dbytes, accdesc] = data1; Mem[address2, dbytes, accdesc] = data2; if wback then if n == 31 then SP[] = address; else X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.


Internal version only: aarchmrs v2024-03_relA, pseudocode v2024-03_rel, sve v2024-03_rel ; Build timestamp: 2024-03-26T09:45

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.