SUMLALL (multiple and indexed vector)

Multi-vector signed by unsigned integer multiply-add long-long by indexed element

This signed by unsigned integer multiply-add long-long instruction multiplies each signed 8-bit element in the one, two, or four first source vectors with each unsigned 8-bit indexed element of the second source vector, widens each product to 32-bits and destructively adds these values to the corresponding 32-bit elements of the ZA quad-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the same element position within each 128-bit vector segment. The element index range is from 0 to one less than the number of elements per 128-bit segment, encoded in 4 bits.

The quad-vector group within all of, each half of, or each quarter of the ZA array is selected by the sum of the vector select register and offset range, modulo all, half, or quarter the number of ZA array vectors.

The vector group symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector groups respectively. The vector group symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA quad-vector , Two ZA quad-vectors and Four ZA quad-vectors

One ZA quad-vector
(FEAT_SME2)

313029282726252423222120191817161514131211109876543210
110000010000Zmi4hRvi4lZn101off2
US

SUMLALL ZA.S[<Wv>, <offs1>:<offs4>], <Zn>.B, <Zm>.B[<index>]

if !IsFeatureImplemented(FEAT_SME2) then UNDEFINED; constant integer esize = 32; constant integer v = UInt('010':Rv); constant integer n = UInt(Zn); constant integer m = UInt('0':Zm); constant integer offset = UInt(off2:'00'); constant integer index = UInt(i4h:i4l); constant integer nreg = 1;

Two ZA quad-vectors
(FEAT_SME2)

313029282726252423222120191817161514131211109876543210
110000010001Zm0Rv0i4hZn110i4lo1
US

SUMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

if !IsFeatureImplemented(FEAT_SME2) then UNDEFINED; constant integer esize = 32; constant integer v = UInt('010':Rv); constant integer n = UInt(Zn:'0'); constant integer m = UInt('0':Zm); constant integer offset = UInt(o1:'00'); constant integer index = UInt(i4h:i4l); constant integer nreg = 2;

Four ZA quad-vectors
(FEAT_SME2)

313029282726252423222120191817161514131211109876543210
110000010001Zm1Rv0i4hZn0110i4lo1
US

SUMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

if !IsFeatureImplemented(FEAT_SME2) then UNDEFINED; constant integer esize = 32; constant integer v = UInt('010':Rv); constant integer n = UInt(Zn:'00'); constant integer m = UInt('0':Zm); constant integer offset = UInt(o1:'00'); constant integer index = UInt(i4h:i4l); constant integer nreg = 4;

Assembler Symbols

<Wv>

Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1>

For the one ZA quad-vector variant: is the first vector select offset, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the first vector select offset, encoded as "o1" field times 4.

<offs4>

For the one ZA quad-vector variant: is the fourth vector select offset, encoded as "off2" field times 4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the fourth vector select offset, encoded as "o1" field times 4 plus 3.

<Zn>

Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1>

For the two ZA quad-vectors variant: is the name of the first scalable vector register of the first source multi-vector group, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of the first source multi-vector group, encoded as "Zn" times 4.

<Zn4>

Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as "Zn" times 4 plus 3.

<Zn2>

Is the name of the second scalable vector register of the first source multi-vector group, encoded as "Zn" times 2 plus 1.

<Zm>

Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index>

Is the element index, in the range 0 to 15, encoded in the "i4h:i4l" fields.

Operation

CheckStreamingSVEAndZAEnabled(); constant integer VL = CurrentVL; constant integer elements = VL DIV esize; constant integer vectors = VL DIV 8; constant integer vstride = vectors DIV nreg; constant integer eltspersegment = 128 DIV esize; constant bits(32) vbase = X[v, 32]; integer vec = (UInt(vbase) + offset) MOD vstride; bits(VL) result; vec = vec - (vec MOD 4); for r = 0 to nreg-1 constant bits(VL) operand1 = Z[n+r, VL]; constant bits(VL) operand2 = Z[m, VL]; for i = 0 to 3 constant bits(VL) operand3 = ZAvector[vec + i, VL]; for e = 0 to elements-1 constant integer segmentbase = e - (e MOD eltspersegment); constant integer s = 4 * segmentbase + index; constant integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]); constant integer element2 = UInt(Elem[operand2, s, esize DIV 4]); constant bits(esize) product = (element1 * element2)<esize-1:0>; Elem[result, e, esize] = Elem[operand3, e, esize] + product; ZAvector[vec + i, VL] = result; vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:


Internal version only: aarchmrs v2024-03_relA, pseudocode v2024-03_rel, sve v2024-03_rel ; Build timestamp: 2024-03-26T09:45

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.