Unsigned by signed integer matrix multiply-accumulate
The unsigned by signed integer matrix multiply-accumulate instruction multiplies the 2×8 matrix of unsigned 8-bit integer values held in each 128-bit segment of the first source vector by the 8×2 matrix of signed 8-bit integer values in the corresponding segment of the second source vector. The resulting 2×2 widened 32-bit integer matrix product is then destructively added to the 32-bit integer matrix accumulator held in the corresponding segment of the addend and destination vector. This is equivalent to performing an 8-way dot product per destination element.
This instruction is unpredicated.
ID_AA64ZFR0_EL1.I8MM indicates whether this instruction is implemented.
This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and enabled.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | Zm | 1 | 0 | 0 | 1 | 1 | 0 | Zn | Zda | ||||||||||||
uns<1> | uns<0> |
if !IsFeatureImplemented(FEAT_SVE) || !IsFeatureImplemented(FEAT_I8MM) then UNDEFINED; constant integer n = UInt(Zn); constant integer m = UInt(Zm); constant integer da = UInt(Zda); constant boolean op1_unsigned = TRUE; constant boolean op2_unsigned = FALSE;
<Zda> |
Is the name of the third source and destination scalable vector register, encoded in the "Zda" field. |
<Zn> |
Is the name of the first source scalable vector register, encoded in the "Zn" field. |
<Zm> |
Is the name of the second source scalable vector register, encoded in the "Zm" field. |
CheckNonStreamingSVEEnabled(); constant integer VL = CurrentVL; constant integer segments = VL DIV 128; constant bits(VL) operand1 = Z[n, VL]; constant bits(VL) operand2 = Z[m, VL]; constant bits(VL) operand3 = Z[da, VL]; bits(VL) result = Zeros(VL); bits(128) op1, op2; bits(128) res, addend; for s = 0 to segments-1 op1 = Elem[operand1, s, 128]; op2 = Elem[operand2, s, 128]; addend = Elem[operand3, s, 128]; res = MatMulAdd(addend, op1, op2, op1_unsigned, op2_unsigned); Elem[result, s, 128] = res; Z[da, VL] = result;
This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is constrained unpredictable:
Internal version only: aarchmrs v2024-03_relA, pseudocode v2024-03_rel, sve v2024-03_rel ; Build timestamp: 2024-03-26T09:45
Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.