The FPSR characteristics are:
Provides floating-point system status information.
AArch64 System register FPSR bits [31:27] are architecturally mapped to AArch32 System register FPSCR[31:27].
AArch64 System register FPSR bit [7] is architecturally mapped to AArch32 System register FPSCR[7].
AArch64 System register FPSR bits [4:0] are architecturally mapped to AArch32 System register FPSCR[4:0].
FPSR is a 64-bit register.
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RES0 | |||||||||||||||||||||||||||||||
N | Z | C | V | QC | RES0 | IDC | RES0 | IXC | UFC | OFC | DZC | IOC |
Reserved, RES0.
Negative condition flag for AArch32 floating-point comparison operations.
AArch64 floating-point comparisons set the PSTATE.N flag instead.
The reset behavior of this field is:
Reserved, RES0.
Zero condition flag for AArch32 floating-point comparison operations.
AArch64 floating-point comparisons set the PSTATE.Z flag instead.
The reset behavior of this field is:
Reserved, RES0.
Carry condition flag for AArch32 floating-point comparison operations.
AArch64 floating-point comparisons set the PSTATE.C flag instead.
The reset behavior of this field is:
Reserved, RES0.
Overflow condition flag for AArch32 floating-point comparison operations.
AArch64 floating-point comparisons set the PSTATE.V flag instead.
The reset behavior of this field is:
Reserved, RES0.
Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced SIMD integer operation has saturated since 0 was last written to this bit.
The reset behavior of this field is:
Reserved, RES0.
Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input Denormal floating-point exception has occurred since 0 was last written to this bit.
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IDE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.IDE is 0.
The reset behavior of this field is:
Reserved, RES0.
Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact floating-point exception has occurred since 0 was last written to this bit.
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IXE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.IXE is 0.
The criteria for the Inexact floating-point exception to occur are affected by whether denormalized numbers are flushed to zero and by the value of the FPCR.AH bit. For more information, see 'Floating-point exceptions and exception traps'.
The reset behavior of this field is:
Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow floating-point exception has occurred since 0 was last written to this bit.
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.UFE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.UFE is 0 or if flushing denormalized numbers to zero is enabled.
The criteria for the Underflow floating-point exception to occur are affected by whether denormalized numbers are flushed to zero and by the value of the FPCR.AH bit. For more information, see 'Floating-point exceptions and exception traps'.
The reset behavior of this field is:
Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow floating-point exception has occurred since 0 was last written to this bit.
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.OFE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.OFE is 0.
The reset behavior of this field is:
Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide by Zero floating-point exception has occurred since 0 was last written to this bit.
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.DZE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.DZE is 0.
The reset behavior of this field is:
Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the Invalid Operation floating-point exception has occurred since 0 was last written to this bit.
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IOE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.IOE is 0.
The criteria for the Invalid Operation floating-point exception to occur are affected by the value of the FPCR.AH bit. For more information, see 'Floating-point exceptions and exception traps'.
The reset behavior of this field is:
Accesses to this register use the following encodings in the System register encoding space:
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b011 | 0b0100 | 0b0100 | 0b001 |
if PSTATE.EL == EL0 then if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then UNDEFINED; elsif !ELIsInHost(EL0) && CPACR_EL1.FPEN != '11' then if EL2Enabled() && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x00); else AArch64.SystemAccessTrap(EL1, 0x07); elsif ELIsInHost(EL0) && CPTR_EL2.FPEN != '11' then AArch64.SystemAccessTrap(EL2, 0x07); elsif ELIsInHost(EL2) && CPTR_EL2.FPEN IN {'x0'} then AArch64.SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then AArch64.SystemAccessTrap(EL2, 0x07); elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x07); else X[t, 64] = FPSR; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then UNDEFINED; elsif CPACR_EL1.FPEN IN {'x0'} then AArch64.SystemAccessTrap(EL1, 0x07); elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then AArch64.SystemAccessTrap(EL2, 0x07); elsif ELIsInHost(EL2) && CPTR_EL2.FPEN IN {'x0'} then AArch64.SystemAccessTrap(EL2, 0x07); elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x07); else X[t, 64] = FPSR; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then UNDEFINED; elsif !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then AArch64.SystemAccessTrap(EL2, 0x07); elsif ELIsInHost(EL2) && CPTR_EL2.FPEN IN {'x0'} then AArch64.SystemAccessTrap(EL2, 0x07); elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x07); else X[t, 64] = FPSR; elsif PSTATE.EL == EL3 then if CPTR_EL3.TFP == '1' then AArch64.SystemAccessTrap(EL3, 0x07); else X[t, 64] = FPSR;
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b011 | 0b0100 | 0b0100 | 0b001 |
if PSTATE.EL == EL0 then if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then UNDEFINED; elsif !ELIsInHost(EL0) && CPACR_EL1.FPEN != '11' then if EL2Enabled() && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x00); else AArch64.SystemAccessTrap(EL1, 0x07); elsif ELIsInHost(EL0) && CPTR_EL2.FPEN != '11' then AArch64.SystemAccessTrap(EL2, 0x07); elsif ELIsInHost(EL2) && CPTR_EL2.FPEN IN {'x0'} then AArch64.SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then AArch64.SystemAccessTrap(EL2, 0x07); elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x07); else FPSR = X[t, 64]; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then UNDEFINED; elsif CPACR_EL1.FPEN IN {'x0'} then AArch64.SystemAccessTrap(EL1, 0x07); elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then AArch64.SystemAccessTrap(EL2, 0x07); elsif ELIsInHost(EL2) && CPTR_EL2.FPEN IN {'x0'} then AArch64.SystemAccessTrap(EL2, 0x07); elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x07); else FPSR = X[t, 64]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then UNDEFINED; elsif !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then AArch64.SystemAccessTrap(EL2, 0x07); elsif ELIsInHost(EL2) && CPTR_EL2.FPEN IN {'x0'} then AArch64.SystemAccessTrap(EL2, 0x07); elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x07); else FPSR = X[t, 64]; elsif PSTATE.EL == EL3 then if CPTR_EL3.TFP == '1' then AArch64.SystemAccessTrap(EL3, 0x07); else FPSR = X[t, 64];
26/03/2024 09:49; 67c0ae5282a7629ba0ea0ba7267b43cd4f7939f6
Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.