The PFAR_EL1 characteristics are:
Records the faulting physical address for a synchronous External abort, or SError exception taken to EL1.
This register is present only when FEAT_PFAR is implemented. Otherwise, direct accesses to PFAR_EL1 are UNDEFINED.
PFAR_EL1 is a 64-bit register.
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
NS | NSE | RES0 | PA[55:52] | PA[51:48] | PA | ||||||||||||||||||||||||||
PA |
Together with PFAR_EL1.NSE, reports the physical address space of the access that triggered the exception.
NSE | NS | Meaning |
---|---|---|
0b0 | 0b0 | When Secure state is implemented, Secure. Otherwise reserved. |
0b0 | 0b1 | Non-secure. |
0b1 | 0b0 | Reserved. |
0b1 | 0b1 | Realm. |
The reset behavior of this field is:
Non-secure. Reports the physical address space of the access that triggered the exception.
NS | Meaning |
---|---|
0b0 |
Secure physical address space. |
0b1 |
Non-secure physical address space. |
The reset behavior of this field is:
Reserved, RES0.
Together with PFAR_EL1.NS, reports the physical address space of the access that triggered the exception.
For a description of the values derived by evaluating NS and NSE together, see MFAR_EL3.NS.
The reset behavior of this field is:
Reserved, RES0.
Reserved, RES0.
When FEAT_D128 is implemented, extension to PFAR_EL1.PA[47:0].
The reset behavior of this field is:
Reserved, RES0.
When FEAT_LPA is implemented, extension to PFAR_EL1.PA[47:0].
The reset behavior of this field is:
Reserved, RES0.
Physical Address. Bits [47:0] of the aborting physical address.
For implementations with fewer than 48 physical address bits, the corresponding upper bits in this field are RES0.
The recorded address can be any address within the same naturally-aligned fault granule as the faulting physical address, where the size of the fault granule is IMPLEMENTATION DEFINED and no larger than the larger than:
The reset behavior of this field is:
When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL3 using the accessor name PFAR_EL1 or PFAR_EL12 are not guaranteed to be ordered with respect to accesses using the other accessor name.
PFAR_EL1 is not valid and reads UNKNOWN if ESR_EL1.PFV is recorded as 0.
Accesses to this register use the following encodings in the System register encoding space:
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b000 | 0b0110 | 0b0000 | 0b101 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PFAREn == '0' then UNDEFINED; elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) && SCR_EL3.FGTEn2 == '0') || HFGRTR2_EL2.nPFAR_EL1 == '0') then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && SCR_EL3.PFAREn == '0' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif EffectiveHCR_EL2_NVx() IN {'111'} then X[t, 64] = NVMem[0x2D0]; else X[t, 64] = PFAR_EL1; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PFAREn == '0' then UNDEFINED; elsif HaveEL(EL3) && SCR_EL3.PFAREn == '0' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif ELIsInHost(EL2) then X[t, 64] = PFAR_EL2; else X[t, 64] = PFAR_EL1; elsif PSTATE.EL == EL3 then X[t, 64] = PFAR_EL1;
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b000 | 0b0110 | 0b0000 | 0b101 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PFAREn == '0' then UNDEFINED; elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) && SCR_EL3.FGTEn2 == '0') || HFGWTR2_EL2.nPFAR_EL1 == '0') then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && SCR_EL3.PFAREn == '0' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif EffectiveHCR_EL2_NVx() IN {'111'} then NVMem[0x2D0] = X[t, 64]; else PFAR_EL1 = X[t, 64]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PFAREn == '0' then UNDEFINED; elsif HaveEL(EL3) && SCR_EL3.PFAREn == '0' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif ELIsInHost(EL2) then PFAR_EL2 = X[t, 64]; else PFAR_EL1 = X[t, 64]; elsif PSTATE.EL == EL3 then PFAR_EL1 = X[t, 64];
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b101 | 0b0110 | 0b0000 | 0b101 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EffectiveHCR_EL2_NVx() == '101' then X[t, 64] = NVMem[0x2D0]; elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then if ELIsInHost(EL2) then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PFAREn == '0' then UNDEFINED; elsif HaveEL(EL3) && SCR_EL3.PFAREn == '0' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else X[t, 64] = PFAR_EL1; else UNDEFINED; elsif PSTATE.EL == EL3 then if ELIsInHost(EL2) then X[t, 64] = PFAR_EL1; else UNDEFINED;
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b101 | 0b0110 | 0b0000 | 0b101 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EffectiveHCR_EL2_NVx() == '101' then NVMem[0x2D0] = X[t, 64]; elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then if ELIsInHost(EL2) then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PFAREn == '0' then UNDEFINED; elsif HaveEL(EL3) && SCR_EL3.PFAREn == '0' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else PFAR_EL1 = X[t, 64]; else UNDEFINED; elsif PSTATE.EL == EL3 then if ELIsInHost(EL2) then PFAR_EL1 = X[t, 64]; else UNDEFINED;
26/03/2024 09:49; 67c0ae5282a7629ba0ea0ba7267b43cd4f7939f6
Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.