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REVISITING SOME VCF IDEAS –  

                     AND A FEW NEW IDEAS 
 

STATE-VARIABLE STABILITY 

 

INTRODUCTION: 

      When it comes to voltage-controlled filters VCF’s as used in analog music synthesizers, 

only two basic design schemes have been popular: (1) The classic “Moog Four-Pole Low-

Pass” and (2) the “State Variable” multi-mode (Fig. 1).  First we can ask why it has boiled down 

to these two. 

 

     While there are many many styles of active filters, and many of these have found a niche in 

which they are most useful, the main thing that needs to be considered about a VCF is of 

course the voltage-control.  That is, the frequency characteristics of the filter need to be 

variable, and to vary in response to a voltage (usually to a current, actually) which can be 

varied faster and automatically (and usually with more accuracy) than with manual control (like 

turning a knob).   Achieving this control is the fundamental consideration.  This is the 

equivalent of achieving one or more (more usually two or four) voltage-controlled resistors.   

For practical reasons, this is often difficult.   The most useful approach to achieving voltage-

control of an overall filter has been to drop back to building from simple voltage-controlled 

building blocks (like integrators and first-order low-pass sections) and accept any limitations 

that result.   Musically, these limitations are not severe at all. 
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   We often hear about a person being an “inventor” when what this person really does is more 

properly called engineering – of a product – often more as an entrepreneur.   In the case of the 

four-pole low-pass (Fig. 1B) however, Bob Moog is quite properly called the inventor.  In 

support of this statement, for one thing, there was a famous patent that resulted from the 

particular implementation.  But perhaps more importantly, Bob did more or less tinker until he 

got things to work.   He used the classic approach of cascading a filter section for higher order, 

and then by inspiration from radio work (regeneration, or positive feedback, possibly inspired 

from his work with Theremins) tried positive feedback to sharpen the response.   This was 

essential, and successful.    

 

     In this case of the four-pole low-pass, there was really NOT a corresponding tradition of a 

non-voltage-controlled version (no active filter using this approach).   This was probably 

because there were better ways of achieving a four-pole response (typically, a Butterworth 

response).  Everyone knew about the Butterworth, but it was not obvious how to efficiently 

make it voltage-controlled.  Further, as it turned out, there may be good musical reasons why 

the four-pole with feedback was at least “good enough” and perhaps superior for the 

synthesizer.   Much literature with regard to the four-pole is available [1-5].  Here we will  
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remark, with regard to the stability properties, that the avoidance of instability (or the active 

decision to achieve it – i.e., oscillation) became well understood.   A pair of poles (two of the 

four) could be placed on the jω-axis with a feedback gain of -4.   The Moog VCF was 

frequently used with this oscillation, or at least in a highly resonant mode. 

 

     So the Moog four-pole low-pass was achieved using voltage-controllable building blocks 

(the first-order low-pass) with an unconventional feedback scheme not found in the fixed filter 

bag of tricks.   On the other hand, an even simpler voltage-controlled building block, the 

integrator, was available to be exploited.   This time, there WAS a fixed prototype active filter – 

the so-called “State Variable Filter” (SVF) already in use (Fig. 1A).  It was basically also known 

from the days of “analog computers” being two integrators and a summer in a loop.   It was an 

analog “computer” in the sense that it simulated a second-order response.   And it “simulated” 

it by producing voltages corresponding to the magnitudes of the variables (“state-variables”) of 

the system.   In simulating the variables, it WAS itself a second-order system!  [Today we think 

of simulation as something that is done on a digital-computer, usually written in a higher-order 

program language.   What the SVF was to analog synthesis is pretty much what the digital 

technique of “physical modeling” is to digital synthesis.   Sometimes the best way (sometimes 

only way) to examine something, particularly a chaotic system, is to “realize” it on a computer, 

sample-by-sample.] 

 

     While well described, initially the SVF was not widely used as an active filter.  Simply this 

was because it required three op-amps, and achieved only second-order, while configurations 

using only one op-amp would often work as well or better (Sallen-Key, MFIG, etc.).   And op-

amps were initially expensive.   Less obvious initially was the fact that the SVF was not a good 

performer from a sensitivity point of view (component tolerances mattered).  The shining 

feature of the SVF had to be its “biquad” (bi-quadratic) potential.  Using it, one could achieve 

(via an additional summer usually) a transfer function that had a numerator that was second –

order – having powers of s that were s0, s1, and s2.   Our readers will recognize this as 

suggesting that the filter could produce not just a low-pass response (s0), but a bandpass (s1) 

and a highpass (s2), simultaneously.    

 

     Thus, a synthesizer designer looking to construct a VCF naturally considered the SVF 

(likely in part to avoid patent issues).   On the downside, it was only 2nd order.  On the upside, 

it offered two additional responses.    Both these issues were somewhat superficial.   A full 

study of the 4-pole showed that two of the four poles dominated the response anyway.  It did 

offer 24db/octave (rather than just 12 db/octave) roll-off, true enough.  [Some will argue that 

there is something else “mystical” about the 4-pole that does not show up in the engineering 

specifications.]   As for the three responses of the SVF, this also was a dubious advantage. 

Many (most?) of the useful musical sounds achieved tended to be low-pass (like their  
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acoustical precursors).  Bandpass was sometimes used, but virtually the same thing could be 

had with a highly resonant (corner-peaked) low-pass.  And it seemed, no one wanted high-

pass.     

 

 

SENSITIVITY WITH VARIABLE PARAMETERS – AN EXPERIMENT 
 

     It is not too difficult to draw block diagrams and even to make a real design assuming ideal 

components.   When it comes to real filters with real components, a wealth of information 

relating to “Sensitivity” is available [6].   For the most part, this pertains to what we might call 

“tweaking” or “fine tuning”, or it can be intentional “overdesign” knowing that actual 

performance will drop away from the nominal.  This might relate to random occurrences of 

actual values of resistors and capacitors (up or down about a nominal marked value), or the 

general unidirectional “failure” of some active component to perform ideally (in reality, they all 

have speed limitations).   

 

     Even these are not too difficult for fixed specifications of an active filter.  When it comes to a 

variable filter however, things can get very slippery.   That is, we can make a fixed filter stand 

still where we want it, but when we try to make it offer a similar or corresponding performance 

over a range of one of its design parameters (typically the cutoff frequency) than additional 

complications are the rule.   These can be so complicated that we often resort to tinkering right 

at the bench (like a few small phase-lead capacitors inserted) rather than engineering analysis 

[2].  Our electronic music VCF’s are not only variable, but variable on the time scales of 

individual musical notes.  You can’t take these out of the case and adjust them! They have to 

be at least stable over a predictable range. 

 

     In a recent review [7] we looked again at this problem.  A theory of compensation was 

examined.  Does this work, and if so, how does it compare to a intuitive approach?  Below we 

give brief results of using a test circuit for a non-voltage-controlled state variable filter (Fig. 2). 

We have taken some experimental data, but this is not meant to be, nor is it, conclusive.  The 

circuit was breadboarded with LF13741 op-amps – BiFET input and 741 output.  We chose 

these slow op-amps because we were looking to demonstrate limitations.  It was also tried in 

part with LF351 op-amps.  The circuit with the three switches shown does not really exist.   

The changes were made by moving wires. Some reader may want to take more data. 

 
     Fig 2 shows the test setup for the SVF.   The full setup has six op-amps, the three blue 

ones being the original SVF structure, and the three red ones are the “active compensation” 

additions.  In the setup, as mentioned, we show “switches” although these are just the  
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changes of jumpers on the breadboard, not actual switches.   With the switches as shown, the 

red op-amps in the feedback loops are bypassed, so their outputs don’t go anywhere.  The 

switches S1a, S1b, and S1c (blue) are all to be thrown as a unit.   The switch S2 can be used 

to disable the dampling (by opening the green switch, which is closed here).   With RQ = 200k 

as shown, the Q is set for Q=1, a very modest response.  [Note that Q = 1/D, and here the gain 

D is determined by the voltage divider, R’ /(R’+RQ) times a non-inverting gain of 3 from the (+) 

input of  A1 to its output ].   If we open switch S2 (green), all feedback (all damping, D) from 

the bandpass output is blocked.  In this case, the Q =1/D is theoretically infinite, and the 

structure theoretically is a sine-wave oscillator.   Thus, we want to observe if we open switch 

S2 if the filter oscillates: it doesn’t although the Q shoots up.  The red switch S3 shown as 

open here is not a part of a regular SVF.  Instead it is a “cheater” path that allows us to switch 

in some positive feedback.  Note that this is a path from the bandpass (already inverted 

because of the inverting integrator) to the (-) input of A1, hence positive feedback relative to 

that to the (+) input of A1 from RQ.  Note that the resistors R can be either 100k (a test at low 

frequencies) or 8.2k (a test for high frequencies).   By placing the three S1 switches in the 

upper positions, we can test the same basic SVF with the compensated integrators and 

summer.   Lot’s of options to test.    

 

     The first test (shown in Fig. 3) is the baseline, original structure (three op-amps), low 

frequency (R=100k), and Q of 1, green switch closed.   In this case, the frequency at the center 

of the bandpass should be 1/2 RC = 1592Hz.  Experimentally we got the center of the 

bandpass at 1652 and a Q of 0.93. 
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     Our second test is to see if the circuit actually does work with the six op-amps.  It does, and 

looks very similar to the three op-amp version.  Experimentally, the center frequency was 1715 

Hz and the Q was 0.95.   Since this is only one measurement, no significant difference should 

be inferred between the three and six op-amp versions based on these results. 

 

     In the third test, we removed the damping by opening the switch S2.  As mentioned, in 

theory we get exactly a sinusoidal oscillator.   In practice, the circuit did not oscillate.  In these 

two cases, we just measured the Q.   The three op-amp version had a center frequency of 

1685 Hz and a Q of 73.   The six op-amp version had a center frequency of 1699 Hz and a Q 

of 36.   Since these did not oscillate with all damping removed (a result consistent with years of 

similar findings, but often discussed) we added the “cheater positive feedback using Rx 

through switch S3.   In the case of the three op-amp version, a value of Rx of 10M caused a 

nice sinewave oscillation at 1692 Hz.  An oscillation of slightly wavering amplitude was 

achieved with Rx=12M, and no oscillation at Rx = 15M.  If Rx was set down to 5.1M, the 

sinewave clipped (too much positive feedback).   With the six op-amp version, Rx=5.1M gave a 

clean sinewave at 1689 Hz, and oscillation did not occur at Rx = 10M.  The conclusion is that at 

low frequencies, the state-variable does not self-oscillate, but requires a tiny bit of added 

positive feedback. 
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     For the fourth test, we went to high frequency by changing R to 8.2k.  Originally I tried 1k, 

but the results were far too unstable.   Put another way, the expected Q-enhancement and 

corresponding self-oscillation was clearly observed when we tried for a 159 kHz center 

frequency by making R=1k.   Note right here that it was NOT the case that the instability went 

away with the six op-amp version (perhaps it was worse – see below).   

 

     So we tried 8.2k for R, which would be a theoretical center frequency of 19,419 Hz (top of 

audio range).    With the three op-amp version, this gave a center frequency of 19,851 Hz and 

a Q of 0.86 (still nominally 1).  With the six op-amp version, the center frequency was 19,181 

Hz and the Q was 1.32.   Not what we expected?  

 

     Keeping in mind that the results here are very sketchy (we emphasize we are mainly 

suggesting doing these test and the test circuit), this is disappointing.  But, we learn from 

observations.  It is true that we were looking for a Q enhancement with the three op-amp 

version at high frequencies, and hoped the six op-amp version would correct this.   Instead, we 

saw a slightly higher Q with the six op-amps.   Moreover, two other things were seen which 

may provide a clue.  The waveforms with six op-amps also showed what was apparently a 

superimposed high-frequency oscillation.  That is, it was fuzzy, and in fact looked like what one 

often interprets as a weak harmonic coming through an extra strong high-frequency bandpass.   

I could not find this higher bandpass however, and the effect did not seem to depend on input 

frequency (as would be true if this were harmonics).  Secondly, with six op-amps, we also  
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found a nasty oscillation that could occur (be triggered) by high frequencies well above the 

cutoff (although the oscillation was lower, about 10.4 kHz) and by high input amplitude.  Please 

see Fig. 4.  This oscillation was clipped, and the sides looked slew-limited, so something 

broadly characterized as “non-linear” was going on (see note at end [8]).  Recall the “jump 

resonant” phenomenon [9], a known result of slew-limiting, such as we have with these 

LF13741’s.   This oscillation might or might not go away if we reduced the input signal to zero, 

or we might need to turn off the power supply.   It can be also cleared out by randomly 

messing with the input conditions.  (Keep in mind that it is always possible to completely 

cancel an oscillation by inputting a single cycle of the oscillation inverted.)   This certainly 

reminds us of overflow oscillations in digital filters!   The experiment is trying to tell us 

something.    

   

     At this point the “box the toy came in is more interesting than the toy”.  But this would 

require a lot more study, which I may or may not get to eventually.   Here are a few more 

observations.    

 

(1) The slew limiting at 0.8 volts/μsec seemed a bit high.  Indeed, the data sheet gives 0.5 

volts/ μsec – the same as an ordinary 741 (denoted “typical”).  Yet the slope on the scope and 

the frequency/amplitude observations agree.  An independent test did give 0.8 v/μsec.  Indeed, 

if we drive an open-loop SL13741 with a square wave of frequency 10,400 Hz, it is virtually 

identical to Fig. 4.   

 

(2)  A curious finding that seemed initially to be highly significant was that the waveform at the 

(+) input of A2 is not the same as 1/3 the output of A2 (Fig. 5a).  A2 is supposed to be a gain of 

3.   Fig. 5b shows the similar comparison of the outputs of A1 and A2, which should be the 

same in the ideal case (A1 is the more symmetrical one).   The differential inputs to A2 look 

like Fig. 5b, but are only 1/3 of the voltages.    Thus we see that the difference between the  

inputs drives the A2 op-amp into slew limiting.  But wait!   If we had, for example, a series of 

op-amp followers in series, and the last one appears to be slew limited, which one is it that it 

actually slew limited?   Well, the one that is (by chance) actually the slowest of the lot.    

 

     Accordingly, it at first seemed that since the voltage at the (+) input of A2 was not of 

sufficient slope to be slew limited (indeed it is only about 1/3 of what is necessary) that slew 

limiting occurs with A2, and that this may be the cause of the nasty oscillation.  But it is as 

likely (in general) that any other op-amp in the loop is the slowest one.  So this is a symptom 

(or a clue) but not an answer. 

 

(3)  Likewise, the other two followers (A4 and A6, which do actually have a gain of 1), like A2, 

have a difference between input and output waveshapes similar to Fig. 5b.   This is a mess,  
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and probably switching op-amps around would change things.  As a first test, a much faster 

LF351 can be substituted and all the waveform change.   It is also possible to make all the   
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op-amps except one be the faster LF351s, so we know that the single LF13741 causes the 

slewing.  This test was not done with enough care to report here. 

 

     At this point, we have introduced an interesting toy, and will stop at that for now.  What 

have we found that  we conclude and want to note: 

 

(1)  At low frequencies, no automatic self-oscillation occurs by removing D.  You have to add a 

tiny bit of positive feedback to get an oscillation. 

 

(2)  Q enhancement, from even a small Q, occurs at high frequency.  The active compensation 

method did not fix this in an obvious or simple manner.   Thus….. 

 

 (3)  Lead compensation with shunt capacitors [2] is still the best practical solution.  But we 

need to be prepared to reduce the resistance of the input leg of the input dividers to keep 

capacitors larger than stray.  I believe all our current designs do this.    Let’s make this clear.  

We have the need for input attenuation to the OTA devices, and in our original work, this was a 

voltage divider of 100k to 220Ω.  This required shunt capacitors on the order of 3 pfd.   

Capacitors this small are too small!   Stray capacitances can already be this large.   

Accordingly, the same attenuation ratio could be achieved with 10k to 22Ω dividers, and the 

shunt capacitor then becomes something more manageable, like 30 pfd.  This is shown in Fig. 

6.     Making the input leg even smaller would make the capacitor even larger and more 

convenient, but loading the previous stage might be a problem if we went to, say, 1k (not to 

mention the problem of finding 2.2Ω resistors). 
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REVISITING:  STATE-VARIABLE TO 4-POLE     

 

CHOOSING BETWEEN STATE-VARIABLE AND FOUR POLE 

 

    As we have mentioned, most commercial (and home-brew) analog synthesizers use either 

the state-variable or the 4-pole (Fig. 1) [1-4].   Many home builders have constructed both, or 

indeed many options.  Another consideration is (was?) the availability of certain dedicated 

electronic music IC’s for VCF’s which have four transconductor sections.  (At the same time, 

IC’s with single OTA’s are harder to find, while duals are more common.)  In consequence, the 

notion of transitioning between S-V and 4-Pole approaches remains attractive.   Fig. 7 shows 

an obvious configuration [5] 

 

                                     

 

     Here the two boxes in the lower portion of Fig. 7 are state-variable sections.   We have set 

these to a fixed damping (D=2, or Q = 1/D = 1/2), which correspond to two real poles at s = -1.  

The two second-order state-variable sections thus are (each) just the same as two wimpy first-

order sections in series (red box).   We assume that the cutoff frequencies are the same, equal 

to 1, as well.   Thus Fig. 7 performs the same as Fig. 1B.  In a bit, we will consider the 

possibilities of using different dampings in two different sections.   For the moment, we have 

just done the Moog 4-Pole is a different way.   The purpose was to better use available chips 

[5], and to avoid the dilemma of having to choose either the S-V or the 4-Pole. 
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     First however, there are two other ways of manipulating designs related to a Moog 4-Pole 

structure [3]: one is to use feed-forward paths to implement zeros for bandpass, high-pass, 

etc. (essentially as we usually do for notch with state-variable), as indicated in Fig. 8, and the 

second is to use a series (cascade) of state-variable sections, the approach in Fig. 9.  
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     The feed-forward approach (Fig. 8) is likely well-enough described in the previous reference 

[3] so will be left here just for review.   The cascade approach is “trivial” but ripe with options.  I 

appreciate a recent question from Nick Keller, who pointed out that this option was 

implemented (or at least attempted) in a factory-mod of a commercial synthesizer.  This mod 

apparently did not use the second (lower) six pole ganged switch.  In [3] we suggested only a 

four-pole switch (the four-pole switch not to be confused with a four-pole filter!), Fig. 21 of that 

paper, where only LP was done to 4th Order.  I hope that our presentation, although clear, was 

not instigation for the confusion.   

 

     But to the present, we should mention that the cascade, even as correctly done in Fig. 9, is 

NOT and can not be identical to the Moog low-pass (except with g=0).  It may offer perfectly 

good filtering, but it is not Moog.   Recall (and see Fig. 11 and Fig. 14b below) that for the 

original Moog, as one increases g, the four poles move (famously) outward from s = -1 (that is, 

from a normalized cutoff frequency of 1, moving on the corners of a square.  So first of all, they 

move to different pole radii, while as shown (Fig. 9), both S-V sections have the same pole 

radii.  Additionally, with the Moog, two poles move toward the jω-axis, while the other two 

move away from the jω-axis.  With considerable effort, you could make Fig. 9 be a Moog 4-

pole, but of course, you would just simply use Fig. 1.  Again, you might like Fig. 9 better than 

the Moog.  [For example, making D1 = 2cos(22.5°) and D2=2cos(67.5°) you could get a 4th-

Order Butterworth.   Musically however, a corner-peaked response like the Moog is more 

familiar.]   

 

 

SEPARATE DAMPINGS WITH MOOG-LIKE FEEDBACK 
 

     Here we look at an obvious idea which I don’t recall our doing, or seeing before.  Here we 

simply modify Fig 7 by allowing the dampings to be different, as seen in Fig. 10.   
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What happens?   To cut to the chase, we get a result very similar to the Moog 4-Pole, with a 

pair of poles moving to the jω-axis, but for lower values of g (for dampings less than 2).  This is 

perhaps testimony to the power of positive feedback and the general validity of Moog’s notion 

of achieving corner-peaking.   Neat.  Reassuring. 

 

     Here the tool used is Matlab (simple code at end) and finding root loci is trivial, relative to 

35 years ago!   Here is what the test program does:  For a choice of dampings D1 and D2, it 

searches value of g starting at g=0 until a pair or poles reaches the jω-axis. This value, gmax, 

incidentally, is the product of D1 and D2.  (Need to prove this.)  Then, for five values of g, of 0, 

gmax/4, gmax/2, 3gmax/4, and gmax, chosen as representative, it plots the poles and the 

corresponding frequency responses.   Fig. 11 shows the result for the original Moog 4-Pole:   

So the four poles start at s = -1 (all poles start at a radius of 1) for g=0 and two of the four end 

up at ±j for g = 4 (all poles for maximum g shown in red for stop).  In addition, at the bottom of 

the plot are four frequency response plots, for four of the five choices of g (gmax itself is not 

plotted since that would blow up).   This is of course familiar to us from our previous studies. 

 

     Three additional sets of starting positions are considered here.  Fig. 12 shows what 

happens if we start the poles not at s = -1, but at the 2nd-Order Butterworth positions  

s = -0.7071±0.7071j, with the ± sign thus representing two poles, and each pole used twice, for 

a total of four.   We see the poles initially on the unit circle, each double pole splitting, with two 

moving toward the jω-axis and two away – very similar to the Moog square array.  Quite lovely 

to look at!   In fact, the similarity of the frequency responses is also highly evident.    

 

     The array of Fig. 12 does not start out 4th-Order Butterworth, but a 4th-Order cascade of two 

2nd-Order Butterworth sections.  This point is better made by Fig. 13 where the original poles 

(g=0) are 4th-Order Butterworth, on the unit circle, spaced 45 degrees apart.   Here when we 

increase  g, as before, two poles (the ones that were closest) move toward the jω-axis and two 

move away.  Note the flatter response at g=0 for the true 4th-Order Butterworth – a reault we 

have often given in the past.  However, the main finding from the frequency response plots at 

the bottom of Fig. 13 is the similarity to the previous results.   That is, corner-peaking is 

powerful and a dominant performance.    

 

     The final example (which uses a slightly modified version of the Matlab program listed 

below to better plot a detailed locus) is shown in Fig. 14a (with the original Moog 4-Pole by the 

same program in Fig. 14b).  Here we have put the original poles at  s = -0.5, s = -1, s = -1.5, 

and s = -2.5, separated, but all real.   Note how the poles merge and then split into conjugate 

pairs, and in the now familiar manner, two head for the jω-axis while the other two head away.  

This is a familiar behavior for a pole locus.   
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CONCLUSIONS 

 
     Here in the spirit of a “revisit” we have looked at some familiar things, but have also looked 

at several interesting new things (and left some issues unanswered).  One overall finding is: 

WE HAVE BEEN DOING THINGS PRETTY WELL ALL ALONG.   With the state-variable, we 

have seen that the shunt lead compensation (the added capacitors on the attenuators) really 

are simple and effective.   With the Moog 4-Pole, it was the feedback and corner peaking 

(Moog’s intuition) that is still the main story.   Today, we have additional tools, but the existing 

practice is apparently something which we can still embrace.   
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Appendix – Matlab Program 
 

% nm1 

clear 

clf 

D1=2*cos(22.5*pi/180)  

D2=2*cos(67.5*pi/180) 

 

%D1=sqrt(2) 

%D2=sqrt(2) 

 

%D1=2 

%D2=2 

 

% find gmax 

g=0; 

rp=-100; 

while rp<0  

   poles=roots([1 D1+D2 (D1*D2+2) D1+D2 (1+g)]); 

   p1=poles(1); 

   p2=poles(2); 

   p3=poles(3); 

   p4=poles(4); 

   rp=max([real(p1) real(p2) real(p3) real(p4)]); 

   g=g+0.00001; 

end 

gmax=g  
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% now find poles at multiples of gmax/4 

k=0; 

for g = 0:gmax/4:gmax 

   k=k+1  

   g 

   poles=roots([1 D1+D2 (D1*D2+2) D1+D2 (1+g)]);  

   p1k(k)=poles(1);  

   p2k(k)=poles(2); 

   p3k(k)=poles(3); 

   p4k(k)=poles(4); 

end 

 

% plot the poles 

figure(1) 

a=0:pi/1000:pi; 

y=cos(a); 

x=-sin(a); 

 

plot([0 0],[-10 10],'k') 

hold on 

plot([-10 10],[0 0],'k') 

plot(x,y,'b') 

% 

plot(p1k,'xk') 

plot(p2k,'xk') 

plot(p3k,'xk') 

plot(p4k,'xk') 

plot(p1k(5),'xr') 

plot(p2k(5),'xr') 

plot(p3k(5),'xr') 

plot(p4k(5),'xr') 

% 

axis([-2.1 1 -2 +2]) 

axis('equal') 

hold off 

figure(1) 

 

% now plot the frequency response (but not for gmax which becomes 

infinite) 

f=0:.01:4; 
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figure(2) 

% 

subplot(221) 

g=0; 

M=freqs(1,[1 D1+D2 (D1*D2+2) D1+D2 (1+g)],f); 

plot([-1 5],[0 0],'k') 

hold on 

plot([0 0 ],[-10 100],'k') 

plot(f,abs(M)) 

Mmax=max(abs(M)); 

axis([-0.5 4.5 -0.1*Mmax 1.1*Mmax]) 

hold off 

% 

subplot(222) 

g=gmax/4; 

M=freqs(1,[1 D1+D2 (D1*D2+2) D1+D2 (1+g)],f); 

plot([-1 5],[0 0],'k') 

hold on 

plot([0 0 ],[-10 100],'k') 

plot(f,abs(M)) 

Mmax=max(abs(M)); 

axis([-0.5 4.5 -0.1*Mmax 1.1*Mmax]) 

hold off 

% 

subplot(223) 

g=gmax/2; 

M=freqs(1,[1 D1+D2 (D1*D2+2) D1+D2 (1+g)],f); 

plot([-1 5],[0 0],'k') 

hold on 

plot([0 0 ],[-10 100],'k') 

plot(f,abs(M)) 

Mmax=max(abs(M)); 

axis([-0.5 4.5 -0.1*Mmax 1.1*Mmax]) 

hold off 

%  
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subplot(224) 

g=3*gmax/4; 

M=freqs(1,[1 D1+D2 (D1*D2+2) D1+D2 (1+g)],f); 

plot([-1 5],[0 0],'k') 

hold on 

plot([0 0 ],[-10 100],'k') 

plot(f,abs(M)) 

Mmax=max(abs(M)); 

axis([-0.5 4.5 -0.1*Mmax 1.1*Mmax]) 

hold off 

%  

figure(2) 
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