ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1

The ICC_BPR1_EL1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field determines Group 1 interrupt preemption.

Configuration

This register is banked between ICC_BPR1_EL1 and ICC_BPR1_EL1_S and ICC_BPR1_EL1_NS.

AArch64 System register ICC_BPR1_EL1 bits [31:0] (ICC_BPR1_EL1_S) are architecturally mapped to AArch32 System register ICC_BPR1[31:0] (ICC_BPR1_S).

AArch64 System register ICC_BPR1_EL1 bits [31:0] (ICC_BPR1_EL1_NS) are architecturally mapped to AArch32 System register ICC_BPR1[31:0] (ICC_BPR1_NS).

This register is present only when GICv3 is implemented. Otherwise, direct accesses to ICC_BPR1_EL1 are UNDEFINED.

Virtual accesses to this register update ICH_VMCR_EL2.VBPR1.

Attributes

ICC_BPR1_EL1 is a 64-bit register.

This register has the following instances:

Field descriptions

6362616059585756555453525150494847464544434241403938373635343332
313029282726252423222120191817161514131211109876543210
RES0
RES0BinaryPoint

Bits [63:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. For more information about priorities, see 'Priority grouping' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

The minimum value of the Non-secure copy of this register is the minimum value of ICC_BPR0_EL1 + 1. The minimum value of the Secure copy of this register is the minimum value of ICC_BPR0_EL1.

If EL3 is implemented and ICC_CTLR_EL3.CBPR_EL1S is 1:

If EL3 is implemented and ICC_CTLR_EL3.CBPR_EL1NS is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending on the values of HCR_EL2.IMO and SCR_EL3.IRQ:

HCR_EL2.IMOSCR_EL3.IRQBehavior
0b00b0Non-secure EL1 and EL2 reads return ICC_BPR0_EL1 + 1 saturated to 0b111. Non-secure EL1 and EL2 writes are ignored.
0b00b1Non-secure EL1 and EL2 accesses trap to EL3.
0b10b0Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPR0_EL1 + 1 saturated to 0b111. Non-secure EL2 writes are ignored.
0b10b1Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 accesses trap to EL3.

If EL3 is not implemented and ICC_CTLR_EL1.CBPR is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending on the values of HCR_EL2.IMO:

HCR_EL2.IMOBehavior
0b0Non-secure EL1 and EL2 reads return ICC_BPR0_EL1 + 1 saturated to 0b111. Non-secure EL1 and EL2 writes are ignored.
0b1Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPR0_EL1 + 1 saturated to 0b111. Non-secure EL2 writes are ignored.

The reset behavior of this field is:

Accessing ICC_BPR1_EL1

On a reset, the binary point field is UNKNOWN.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum value.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_BPR1_EL1

op0op1CRnCRmop2
0b110b0000b11000b11000b011

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.IRQ == '1' then UNDEFINED; elsif ICC_SRE_EL1.SRE == '0' then AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && HCR_EL2.IMO == '1' then X[t, 64] = ICV_BPR1_EL1; elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) then if SCR_EL3.NS == '0' then X[t, 64] = ICC_BPR1_EL1_S; else X[t, 64] = ICC_BPR1_EL1_NS; else X[t, 64] = ICC_BPR1_EL1; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.IRQ == '1' then UNDEFINED; elsif ICC_SRE_EL2.SRE == '0' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) then if SCR_EL3.NS == '0' then X[t, 64] = ICC_BPR1_EL1_S; else X[t, 64] = ICC_BPR1_EL1_NS; else X[t, 64] = ICC_BPR1_EL1; elsif PSTATE.EL == EL3 then if ICC_SRE_EL3.SRE == '0' then AArch64.SystemAccessTrap(EL3, 0x18); else if SCR_EL3.NS == '0' then X[t, 64] = ICC_BPR1_EL1_S; else X[t, 64] = ICC_BPR1_EL1_NS;

MSR ICC_BPR1_EL1, <Xt>

op0op1CRnCRmop2
0b110b0000b11000b11000b011

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.IRQ == '1' then UNDEFINED; elsif ICC_SRE_EL1.SRE == '0' then AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && HCR_EL2.IMO == '1' then ICV_BPR1_EL1 = X[t, 64]; elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) then if SCR_EL3.NS == '0' then ICC_BPR1_EL1_S = X[t, 64]; else ICC_BPR1_EL1_NS = X[t, 64]; else ICC_BPR1_EL1 = X[t, 64]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.IRQ == '1' then UNDEFINED; elsif ICC_SRE_EL2.SRE == '0' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) then if SCR_EL3.NS == '0' then ICC_BPR1_EL1_S = X[t, 64]; else ICC_BPR1_EL1_NS = X[t, 64]; else ICC_BPR1_EL1 = X[t, 64]; elsif PSTATE.EL == EL3 then if ICC_SRE_EL3.SRE == '0' then AArch64.SystemAccessTrap(EL3, 0x18); else if SCR_EL3.NS == '0' then ICC_BPR1_EL1_S = X[t, 64]; else ICC_BPR1_EL1_NS = X[t, 64];


26/03/2024 09:49; 67c0ae5282a7629ba0ea0ba7267b43cd4f7939f6

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.