ICV_CTLR_EL1, Interrupt Controller Virtual Control Register

The ICV_CTLR_EL1 characteristics are:

Purpose

Controls aspects of the behavior of the GIC virtual CPU interface and provides information about the features implemented.

Configuration

AArch64 System register ICV_CTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register ICV_CTLR[31:0].

This register is present only when GICv3 is implemented and EL2 is implemented. Otherwise, direct accesses to ICV_CTLR_EL1 are UNDEFINED.

Attributes

ICV_CTLR_EL1 is a 64-bit register.

Field descriptions

6362616059585756555453525150494847464544434241403938373635343332
313029282726252423222120191817161514131211109876543210
RES0
RES0ExtRangeRSSRES0A3VSEISIDbitsPRIbitsRES0EOImodeCBPR

Bits [63:20]

Reserved, RES0.

ExtRange, bit [19]

Extended INTID range (read-only).

The value of this field is an IMPLEMENTATION DEFINED choice of:

ExtRangeMeaning
0b0

CPU interface does not support INTIDs in the range 1024..8191.

  • Behavior is UNPREDICTABLE if the IRI delivers an interrupt in the range 1024 to 8191 to the CPU interface.
Note

Arm strongly recommends that the IRI is not configured to deliver interrupts in this range to a PE that does not support them.

0b1

CPU interface supports INTIDs in the range 1024..8191

  • All INTIDs in the range 1024..8191 are treated as requiring deactivation.

ICV_CTLR_EL1.ExtRange is an alias of ICC_CTLR_EL1.ExtRange.

Access to this field is RO.

RSS, bit [18]

Range Selector Support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

RSSMeaning
0b0

Targeted SGIs with affinity level 0 values of 0 - 15 are supported.

0b1

Targeted SGIs with affinity level 0 values of 0 - 255 are supported.

This bit is read-only.

Access to this field is RO.

Bits [17:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored.

The value of this field is an IMPLEMENTATION DEFINED choice of:

A3VMeaning
0b0

The virtual CPU interface logic only supports zero values of Affinity 3 in SGI generation System registers.

0b1

The virtual CPU interface logic supports nonzero values of Affinity 3 in SGI generation System registers.

Access to this field is RO.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the virtual CPU interface supports local generation of SEIs.

The value of this field is an IMPLEMENTATION DEFINED choice of:

SEISMeaning
0b0

The virtual CPU interface logic does not support local generation of SEIs.

0b1

The virtual CPU interface logic supports local generation of SEIs.

Access to this field is RO.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. Indicates the number of virtual interrupt identifier bits supported.

The value of this field is an IMPLEMENTATION DEFINED choice of:

IDbitsMeaning
0b000

16 bits.

0b001

24 bits.

All other values are reserved.

Access to this field is RO.

PRIbits, bits [10:8]

Indicates the number of virtual priority bits implemented.

An implementation must implement at least 32 levels of virtual priority (5 priority bits).

The division between group priority and subpriority is defined in the binary point registers ICV_BPR0_EL1 and ICV_BPR1_EL1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

PRIbitsMeaning
0b100..0b110

The number of virtual priority bits implemented, minus one.

Access to this field is RO.

Bits [7:2]

Reserved, RES0.

EOImode, bit [1]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the virtual interrupt:

EOImodeMeaning
0b0

ICV_EOIR0_EL1 and ICV_EOIR1_EL1 provide both priority drop and interrupt deactivation functionality. Accesses to ICV_DIR_EL1 are UNPREDICTABLE.

0b1

ICV_EOIR0_EL1 and ICV_EOIR1_EL1 provide priority drop functionality only. ICV_DIR_EL1 provides interrupt deactivation functionality.

The reset behavior of this field is:

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both virtual Group 0 and virtual Group 1 interrupts:

CBPRMeaning
0b0

ICV_BPR1_EL1 determines the preemption group for virtual Group 1 interrupts.

0b1

Non-secure reads of ICV_BPR1_EL1 return ICV_BPR0_EL1 plus one, saturated to 0b111. Non-secure writes to ICV_BPR1_EL1 are ignored.

Secure reads of ICV_BPR1_EL1 return ICV_BPR0_EL1. Secure writes of ICV_BPR1_EL1 modify ICV_BPR0_EL1.

The reset behavior of this field is:

Accessing ICV_CTLR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_CTLR_EL1

op0op1CRnCRmop2
0b110b0000b11000b11000b100

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.<IRQ,FIQ> == '11' then UNDEFINED; elsif ICC_SRE_EL1.SRE == '0' then AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && ICH_HCR_EL2.TC == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && HCR_EL2.FMO == '1' then X[t, 64] = ICV_CTLR_EL1; elsif EL2Enabled() && HCR_EL2.IMO == '1' then X[t, 64] = ICV_CTLR_EL1; elsif HaveEL(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) then if SCR_EL3.NS == '0' then X[t, 64] = ICC_CTLR_EL1_S; else X[t, 64] = ICC_CTLR_EL1_NS; else X[t, 64] = ICC_CTLR_EL1; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.<IRQ,FIQ> == '11' then UNDEFINED; elsif ICC_SRE_EL2.SRE == '0' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) then if SCR_EL3.NS == '0' then X[t, 64] = ICC_CTLR_EL1_S; else X[t, 64] = ICC_CTLR_EL1_NS; else X[t, 64] = ICC_CTLR_EL1; elsif PSTATE.EL == EL3 then if ICC_SRE_EL3.SRE == '0' then AArch64.SystemAccessTrap(EL3, 0x18); else if SCR_EL3.NS == '0' then X[t, 64] = ICC_CTLR_EL1_S; else X[t, 64] = ICC_CTLR_EL1_NS;

MSR ICC_CTLR_EL1, <Xt>

op0op1CRnCRmop2
0b110b0000b11000b11000b100

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.<IRQ,FIQ> == '11' then UNDEFINED; elsif ICC_SRE_EL1.SRE == '0' then AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && ICH_HCR_EL2.TC == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && HCR_EL2.FMO == '1' then ICV_CTLR_EL1 = X[t, 64]; elsif EL2Enabled() && HCR_EL2.IMO == '1' then ICV_CTLR_EL1 = X[t, 64]; elsif HaveEL(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) then if SCR_EL3.NS == '0' then ICC_CTLR_EL1_S = X[t, 64]; else ICC_CTLR_EL1_NS = X[t, 64]; else ICC_CTLR_EL1 = X[t, 64]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.<IRQ,FIQ> == '11' then UNDEFINED; elsif ICC_SRE_EL2.SRE == '0' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) then if SCR_EL3.NS == '0' then ICC_CTLR_EL1_S = X[t, 64]; else ICC_CTLR_EL1_NS = X[t, 64]; else ICC_CTLR_EL1 = X[t, 64]; elsif PSTATE.EL == EL3 then if ICC_SRE_EL3.SRE == '0' then AArch64.SystemAccessTrap(EL3, 0x18); else if SCR_EL3.NS == '0' then ICC_CTLR_EL1_S = X[t, 64]; else ICC_CTLR_EL1_NS = X[t, 64];


26/03/2024 09:49; 67c0ae5282a7629ba0ea0ba7267b43cd4f7939f6

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.