TRBLIMITR_EL1, Trace Buffer Limit Address Register

The TRBLIMITR_EL1 characteristics are:

Purpose

Defines the top address for the trace buffer, and controls the trace buffer modes and enable.

Configuration

AArch64 System register TRBLIMITR_EL1 bits [63:0] are architecturally mapped to External register TRBLIMITR_EL1[63:0] when FEAT_TRBE_EXT is implemented.

This register is present only when FEAT_TRBE is implemented. Otherwise, direct accesses to TRBLIMITR_EL1 are UNDEFINED.

Attributes

TRBLIMITR_EL1 is a 64-bit register.

Field descriptions

6362616059585756555453525150494847464544434241403938373635343332
313029282726252423222120191817161514131211109876543210
LIMIT
LIMITRES0XEnVMTMFME

LIMIT, bits [63:12]

Trace Buffer Limit pointer address. (TRBLIMITR_EL1.LIMIT << 12) is the address of the last byte in the trace buffer plus one. Bits [11:0] of the Limit pointer address are always zero. If the smallest implemented translation granule is not 4KB, then TRBLIMITR_EL1[N-1:12] are RES0, where N is the IMPLEMENTATION DEFINED value Log2(smallest implemented translation granule).

The reset behavior of this field is:

Bits [11:7]

Reserved, RES0.

XE, bit [6]
When FEAT_TRBE_EXT is implemented:

Trace Buffer Unit External mode enable. Used for save/restore of TRBLIMITR_EL1.XE.

XEMeaning
0b0

Trace Buffer Unit is not enabled by this control.

0b1

If SelfHostedTraceEnabled() is FALSE, the Trace Buffer Unit is enabled.

Software must treat this field as UNK/SBZP when the OS Lock is unlocked.

The reset behavior of this field is:

Accessing this field has the following behavior:


Otherwise:

Reserved, RES0.

nVM, bit [5]

Address mode.

nVMMeaning
0b0

The trace buffer pointers are virtual addresses.

0b1

The trace buffer pointers are:

  • Physical address in the owning security state if the owning translation regime has no stage 2 translation.
  • Intermediate physical addresses in the owning security state if the owning translation regime has stage 2 translations.

When FEAT_TRBE_EXT is implemented and SelfHostedTraceEnabled() == FALSE, the trace buffer pointers are always physical addresses.

The reset behavior of this field is:

Accessing this field has the following behavior:

TM, bits [4:3]

Trigger mode.

TMMeaning
0b00

Stop on trigger. Flush then stop collection and raise maintenance interrupt on Trigger Event.

0b01

IRQ on trigger. Continue collection and raise maintenance interrupt on Trigger Event.

0b11

Ignore trigger. Continue collection and do not raise maintenance interrupt on Trigger Event.

All other values are reserved.

The reset behavior of this field is:

FM, bits [2:1]

Trace buffer mode.

FMMeaning
0b00

Fill mode. Stop collection and raise maintenance interrupt on current write pointer wrap.

0b01

Wrap mode. Continue collection and raise maintenance interrupt on current write pointer wrap.

0b11

Circular Buffer mode. Continue collection and do not raise maintenance interrupt on current write pointer wrap.

All other values are reserved.

The reset behavior of this field is:

E, bit [0]

Trace Buffer Unit enable. Controls whether the Trace Buffer Unit is enabled when SelfHostedTraceEnabled() == TRUE.

EMeaning
0b0

Trace Buffer Unit is not enabled by this control.

0b1

If SelfHostedTraceEnabled() is TRUE, the Trace Buffer Unit is enabled.

If FEAT_TRBE_EXT is implemented and SelfHostedTraceEnabled() == FALSE, then TRBLIMITR_EL1.XE controls whether the Trace Buffer Unit is enabled.

If FEAT_TRBE_EXT is not implemented, then the Trace Buffer Unit is disabled when SelfHostedTraceEnabled() == FALSE.

All output is discarded by the Trace Buffer Unit when the Trace Buffer Unit is disabled.

The reset behavior of this field is:

Accessing TRBLIMITR_EL1

The PE might ignore a write to TRBLIMITR_EL1 if all the following are true:

If FEAT_TRBE_EXT is implemented, the PE might ignore a write to TRBLIMITR_EL1 if all the following are true:

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRBLIMITR_EL1

op0op1CRnCRmop2
0b110b0000b10010b10110b000

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then UNDEFINED; elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.TRBLIMITR_EL1 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && MDCR_EL2.E2TB IN {'x0'} then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR2.TTA == '1' then Halt(DebugHalt_SoftwareAccess); else X[t, 64] = TRBLIMITR_EL1; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then UNDEFINED; elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR2.TTA == '1' then Halt(DebugHalt_SoftwareAccess); else X[t, 64] = TRBLIMITR_EL1; elsif PSTATE.EL == EL3 then if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR2.TTA == '1' then Halt(DebugHalt_SoftwareAccess); else X[t, 64] = TRBLIMITR_EL1;

MSR TRBLIMITR_EL1, <Xt>

op0op1CRnCRmop2
0b110b0000b10010b10110b000

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then UNDEFINED; elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.TRBLIMITR_EL1 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && MDCR_EL2.E2TB IN {'x0'} then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR2.TTA == '1' then Halt(DebugHalt_SoftwareAccess); else TRBLIMITR_EL1 = X[t, 64]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then UNDEFINED; elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR2.TTA == '1' then Halt(DebugHalt_SoftwareAccess); else TRBLIMITR_EL1 = X[t, 64]; elsif PSTATE.EL == EL3 then if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR2.TTA == '1' then Halt(DebugHalt_SoftwareAccess); else TRBLIMITR_EL1 = X[t, 64];


26/03/2024 09:49; 67c0ae5282a7629ba0ea0ba7267b43cd4f7939f6

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.