Signed saturating rounding doubling multiply-add high to accumulator (unpredicated)
Multiply then double the corresponding signed elements of the first and second source vectors, and destructively add the rounded high half of each result to the corresponding elements of the addend and destination vector. Each destination element is saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1) )-1. This instruction is unpredicated.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | size | 0 | Zm | 0 | 1 | 1 | 1 | 0 | 0 | Zn | Zda | |||||||||||||
S |
if !IsFeatureImplemented(FEAT_SVE2) && !IsFeatureImplemented(FEAT_SME) then UNDEFINED; constant integer esize = 8 << UInt(size); constant integer n = UInt(Zn); constant integer m = UInt(Zm); constant integer da = UInt(Zda);
<Zda> |
Is the name of the third source and destination scalable vector register, encoded in the "Zda" field. |
<T> |
Is the size specifier,
encoded in
|
<Zn> |
Is the name of the first source scalable vector register, encoded in the "Zn" field. |
<Zm> |
Is the name of the second source scalable vector register, encoded in the "Zm" field. |
CheckSVEEnabled(); constant integer VL = CurrentVL; constant integer elements = VL DIV esize; constant bits(VL) operand1 = Z[n, VL]; constant bits(VL) operand2 = Z[m, VL]; constant bits(VL) operand3 = Z[da, VL]; bits(VL) result; for e = 0 to elements-1 constant integer element1 = SInt(Elem[operand1, e, esize]); constant integer element2 = SInt(Elem[operand2, e, esize]); constant integer element3 = SInt(Elem[operand3, e, esize]); constant integer res = (element3 << esize) + (2 * element1 * element2); Elem[result, e, esize] = SignedSat((res + (1 << (esize - 1))) >> esize, esize); Z[da, VL] = result;
If FEAT_SVE2 is implemented or FEAT_SME is implemented, then if PSTATE.DIT is 1:
This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is constrained unpredictable:
Internal version only: aarchmrs v2024-03_relA, pseudocode v2024-03_rel, sve v2024-03_rel ; Build timestamp: 2024-03-26T09:45
Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.