Transpose vectors (secondary). This instruction reads corresponding odd-numbered vector elements from the two source SIMD&FP registers, places each result into consecutive elements of a vector, and writes the vector to the destination SIMD&FP register. Vector elements from the first source register are placed into even-numbered elements of the destination vector, starting at zero, while vector elements from the second source register are placed into odd-numbered elements of the destination vector.
By using this instruction with TRN1, a 2 x 2 matrix can be transposed.
The following figure shows an example of the operation of TRN1 and TRN2 halfword operations where Q = 0.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | Q | 0 | 0 | 1 | 1 | 1 | 0 | size | 0 | Rm | 0 | 1 | 1 | 0 | 1 | 0 | Rn | Rd | |||||||||||||
op |
integer d = UInt(Rd); integer n = UInt(Rn); integer m = UInt(Rm); if size:Q == '110' then UNDEFINED; constant integer esize = 8 << UInt(size); constant integer datasize = 64 << UInt(Q); integer elements = datasize DIV esize; integer part = UInt(op); integer pairs = elements DIV 2;
<Vd> |
Is the name of the SIMD&FP destination register, encoded in the "Rd" field. |
<T> |
Is an arrangement specifier,
encoded in
|
<Vn> |
Is the name of the first SIMD&FP source register, encoded in the "Rn" field. |
<Vm> |
Is the name of the second SIMD&FP source register, encoded in the "Rm" field. |
CheckFPAdvSIMDEnabled64(); bits(datasize) operand1 = V[n, datasize]; bits(datasize) operand2 = V[m, datasize]; bits(datasize) result; for p = 0 to pairs-1 Elem[result, 2*p+0, esize] = Elem[operand1, 2*p+part, esize]; Elem[result, 2*p+1, esize] = Elem[operand2, 2*p+part, esize]; V[d, datasize] = result;
If PSTATE.DIT is 1:
Internal version only: aarchmrs v2024-03_relA, pseudocode v2024-03_rel, sve v2024-03_rel ; Build timestamp: 2024-03-26T09:45
Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.