CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

The CNTHP_CTL characteristics are:

Purpose

Control register for the Hyp mode physical timer.

Configuration

This register is banked between CNTHP_CTL and CNTHP_CTL_S and CNTHP_CTL_NS.

AArch32 System register CNTHP_CTL bits [31:0] are architecturally mapped to AArch64 System register CNTHP_CTL_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTHP_CTL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_CTL is a 32-bit register.

This register has the following instances:

Field descriptions

313029282726252423222120191817161514131211109876543210
RES0ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUSMeaning
0b0

Timer condition is not met.

0b1

Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASKMeaning
0b0

Timer interrupt is not masked by the IMASK bit.

0b1

Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLEMeaning
0b0

Timer disabled.

0b1

Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHP_TVAL continues to count down.

Note

Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

Accessing CNTHP_CTL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b1000b11100b00100b001

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then UNDEFINED; elsif PSTATE.EL == EL2 then R[t] = CNTHP_CTL; elsif PSTATE.EL == EL3 then if SCR.NS == '0' then UNDEFINED; else R[t] = CNTHP_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b1000b11100b00100b001

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then UNDEFINED; elsif PSTATE.EL == EL2 then CNTHP_CTL = R[t]; elsif PSTATE.EL == EL3 then if SCR.NS == '0' then UNDEFINED; else CNTHP_CTL = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b11100b00100b001

if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then AArch32.TakeHypTrapException(0x03); elsif ELIsInHost(EL0) && IsCurrentSecurityState(SS_Secure) && IsFeatureImplemented(FEAT_SEL2) then R[t] = CNTHPS_CTL_EL2<31:0>; elsif ELIsInHost(EL0) && !IsCurrentSecurityState(SS_Secure) then R[t] = CNTHP_CTL_EL2<31:0>; else R[t] = CNTP_CTL; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) then R[t] = CNTP_CTL_NS; else R[t] = CNTP_CTL; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && ELUsingAArch32(EL3) then R[t] = CNTP_CTL_NS; else R[t] = CNTP_CTL; elsif PSTATE.EL == EL3 then if SCR.NS == '0' then R[t] = CNTP_CTL_S; else R[t] = CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b11100b00100b001

if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then AArch32.TakeHypTrapException(0x03); elsif ELIsInHost(EL0) && IsCurrentSecurityState(SS_Secure) && IsFeatureImplemented(FEAT_SEL2) then CNTHPS_CTL_EL2 = R[t]; elsif ELIsInHost(EL0) && !IsCurrentSecurityState(SS_Secure) then CNTHP_CTL_EL2 = R[t]; else CNTP_CTL = R[t]; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) then CNTP_CTL_NS = R[t]; else CNTP_CTL = R[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && ELUsingAArch32(EL3) then CNTP_CTL_NS = R[t]; else CNTP_CTL = R[t]; elsif PSTATE.EL == EL3 then if SCR.NS == '0' then CNTP_CTL_S = R[t]; else CNTP_CTL_NS = R[t];


26/03/2024 09:49; 67c0ae5282a7629ba0ea0ba7267b43cd4f7939f6

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.