CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

The CNTHP_TVAL characteristics are:

Purpose

Holds the timer value for the Hyp mode physical timer.

Configuration

This register is banked between CNTHP_TVAL and CNTHP_TVAL_S and CNTHP_TVAL_NS.

AArch32 System register CNTHP_TVAL bits [31:0] are architecturally mapped to AArch64 System register CNTHP_TVAL_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTHP_TVAL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_TVAL is a 32-bit register.

This register has the following instances:

Field descriptions

313029282726252423222120191817161514131211109876543210
TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

On a write of this register, CNTHP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTHP_CVAL) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

When CNTHP_CTL.ENABLE is 0, the TimerValue cannot be read but continues to decrement. When the timer is enabled, the TimerValue represents the elapsed time whether that time was spent enabled or disabled.

The reset behavior of this field is:

Accessing CNTHP_TVAL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b1000b11100b00100b000

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then UNDEFINED; elsif PSTATE.EL == EL2 then if CNTHP_CTL.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTHP_CVAL - PhysicalCountInt())<31:0>; elsif PSTATE.EL == EL3 then if SCR.NS == '0' then UNDEFINED; else if CNTHP_CTL.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTHP_CVAL - PhysicalCountInt())<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b1000b11100b00100b000

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then UNDEFINED; elsif PSTATE.EL == EL2 then CNTHP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt(); elsif PSTATE.EL == EL3 then if SCR.NS == '0' then UNDEFINED; else CNTHP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b11100b00100b000

if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then AArch32.TakeHypTrapException(0x03); elsif ELIsInHost(EL0) && IsCurrentSecurityState(SS_Secure) && IsFeatureImplemented(FEAT_SEL2) then if CNTHPS_CTL_EL2.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTHPS_CVAL_EL2 - PhysicalCountInt())<31:0>; elsif ELIsInHost(EL0) && !IsCurrentSecurityState(SS_Secure) then if CNTHP_CTL_EL2.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTHP_CVAL_EL2 - PhysicalCountInt())<31:0>; elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then if CNTP_CTL.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTP_CVAL - (PhysicalCountInt() - CNTPOFF_EL2))<31:0>; elsif HaveEL(EL3) && ELUsingAArch32(EL3) then if SCR.NS == '1' then if CNTP_CTL_NS.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>; else if CNTP_CTL_S.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTP_CVAL_S - PhysicalCountInt())<31:0>; else if CNTP_CTL.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTP_CVAL - PhysicalCountInt())<31:0>; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then AArch32.TakeHypTrapException(0x03); elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' then if CNTP_CTL.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTP_CVAL - (PhysicalCountInt() - CNTPOFF_EL2))<31:0>; elsif HaveEL(EL3) && ELUsingAArch32(EL3) then if CNTP_CTL_NS.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>; else if CNTP_CTL.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTP_CVAL - PhysicalCountInt())<31:0>; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && ELUsingAArch32(EL3) then if CNTP_CTL_NS.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>; else if CNTP_CTL.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTP_CVAL - PhysicalCountInt())<31:0>; elsif PSTATE.EL == EL3 then if SCR.NS == '0' then if CNTP_CTL_S.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTP_CVAL_S - PhysicalCountInt())<31:0>; else if CNTP_CTL_NS.ENABLE == '0' then R[t] = bits(32) UNKNOWN; else R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b11100b00100b000

if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then AArch32.TakeHypTrapException(0x03); elsif ELIsInHost(EL0) && IsCurrentSecurityState(SS_Secure) && IsFeatureImplemented(FEAT_SEL2) then CNTHPS_CVAL_EL2 = SignExtend(R[t], 64) + PhysicalCountInt(); elsif ELIsInHost(EL0) && !IsCurrentSecurityState(SS_Secure) then CNTHP_CVAL_EL2 = SignExtend(R[t], 64) + PhysicalCountInt(); elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then CNTP_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTPOFF_EL2; elsif HaveEL(EL3) && ELUsingAArch32(EL3) then if SCR.NS == '1' then CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt(); else CNTP_CVAL_S = SignExtend(R[t], 64) + PhysicalCountInt(); else CNTP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt(); elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then AArch32.TakeHypTrapException(0x03); elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' then CNTP_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTPOFF_EL2; elsif HaveEL(EL3) && ELUsingAArch32(EL3) then CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt(); else CNTP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt(); elsif PSTATE.EL == EL2 then if HaveEL(EL3) && ELUsingAArch32(EL3) then CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt(); else CNTP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt(); elsif PSTATE.EL == EL3 then if SCR.NS == '0' then CNTP_CVAL_S = SignExtend(R[t], 64) + PhysicalCountInt(); else CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt();


26/03/2024 09:49; 67c0ae5282a7629ba0ea0ba7267b43cd4f7939f6

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.