DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

The DBGWCR<n> characteristics are:

Purpose

Holds control information for a watchpoint. Forms watchpoint n together with value register DBGWVR<n>.

Configuration

AArch32 System register DBGWCR<n> bits [31:0] are architecturally mapped to AArch64 System register DBGWCR<n>_EL1[31:0].

AArch32 System register DBGWCR<n> bits [31:0] are architecturally mapped to External register DBGWCR<n>_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to DBGWCR<n> are UNDEFINED.

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGWCR<n> is a 32-bit register.

Field descriptions

313029282726252423222120191817161514131211109876543210
RES0MASKRES0WTLBNSSCHMCBASLSCPACE

When the E field is zero, all the other fields in the register are ignored.

Bits [31:29]

Reserved, RES0.

MASK, bits [28:24]

Address Mask. Only objects up to 2GB can be watched using a single mask.

MASKMeaning
0b00000

No mask.

0b00011..0b11111

Number of address bits masked.

All other values are reserved.

Indicates the number of masked address bits, from 0b00011 masking 3 address bits (0x00000007 mask for address) to 0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

If programmed with a reserved value, the watchpoint behaves as if either:

The reset behavior of this field is:

Bits [23:21]

Reserved, RES0.

WT, bit [20]

Watchpoint type. Possible values are:

WTMeaning
0b0

Unlinked data address match.

0b1

Linked data address match.

The reset behavior of this field is:

LBN, bits [19:16]

Linked Breakpoint Number. For Linked data address watchpoints, this specifies the index of the Context-matching breakpoint linked to.

The reset behavior of this field is:

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for watchpoint n is generated. This field must be interpreted along with the HMC and PAC fields.

For more information, see 'Execution conditions for which a watchpoint generates Watchpoint exceptions', and 'Reserved DBGWCR<n>.{SSC, HMC, PAC} values'.

The reset behavior of this field is:

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug event for watchpoint n is generated. This field must be interpreted along with the SSC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates Watchpoint exceptions'.

The reset behavior of this field is:

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or double-word addressed by DBGWVR<n> is being watched.

BASDescription
0bxxxxxxx1Match byte at DBGWVR<n>
0bxxxxxx1xMatch byte at DBGWVR<n>+1
0bxxxxx1xxMatch byte at DBGWVR<n>+2
0bxxxx1xxxMatch byte at DBGWVR<n>+3

In cases where DBGWVR<n> addresses a double-word:

BASDescription, if DBGWVR<n>[2] == 0
0bxxx1xxxxMatch byte at DBGWVR<n>+4
0bxx1xxxxxMatch byte at DBGWVR<n>+5
0bx1xxxxxxMatch byte at DBGWVR<n>+6
0b1xxxxxxxMatch byte at DBGWVR<n>+7

If DBGWVR<n>[2] == 1, only BAS[3:0] are used and BAS[7:4] are ignored. Arm deprecates setting DBGWVR<n>[2] == 1.

The valid values for BAS are nonzero binary numbers all of whose set bits are contiguous. All other values are reserved and must not be used by software. See 'Reserved DBGWCR<n>.BAS values'.

The reset behavior of this field is:

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made. Possible values of this field are:

LSCMeaning
0b01

Match instructions that load from a watchpointed address.

0b10

Match instructions that store to a watchpointed address.

0b11

Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not rely on this property as the behavior of reserved values might change in a future revision of the architecture.

The reset behavior of this field is:

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug event for watchpoint n is generated. This field must be interpreted along with the SSC and HMC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates Watchpoint exceptions'.

The reset behavior of this field is:

E, bit [0]

Enable watchpoint n. Possible values are:

EMeaning
0b0

Watchpoint disabled.

0b1

Watchpoint enabled.

The reset behavior of this field is:

Accessing DBGWCR<n>

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>} ; Where m = 0-15

coprocopc1CRnCRmopc2
0b11100b0000b0000m[3:0]0b111

integer m = UInt(CRm<3:0>); if m >= NUM_WATCHPOINTS then UNDEFINED; elsif PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then AArch64.AArch32SystemAccessTrap(EL2, 0x05); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then AArch32.TakeHypTrapException(0x05); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x05); elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then Halt(DebugHalt_SoftwareAccess); else R[t] = DBGWCR[m]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x05); elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then Halt(DebugHalt_SoftwareAccess); else R[t] = DBGWCR[m]; elsif PSTATE.EL == EL3 then if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then Halt(DebugHalt_SoftwareAccess); else R[t] = DBGWCR[m];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>} ; Where m = 0-15

coprocopc1CRnCRmopc2
0b11100b0000b0000m[3:0]0b111

integer m = UInt(CRm<3:0>); if m >= NUM_WATCHPOINTS then UNDEFINED; elsif PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then AArch64.AArch32SystemAccessTrap(EL2, 0x05); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then AArch32.TakeHypTrapException(0x05); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x05); elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then Halt(DebugHalt_SoftwareAccess); else DBGWCR[m] = R[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x05); elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then Halt(DebugHalt_SoftwareAccess); else DBGWCR[m] = R[t]; elsif PSTATE.EL == EL3 then if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then Halt(DebugHalt_SoftwareAccess); else DBGWCR[m] = R[t];


26/03/2024 09:49; 67c0ae5282a7629ba0ea0ba7267b43cd4f7939f6

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.