The ICC_BPR1 characteristics are:
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field determines Group 1 interrupt preemption.
This register is banked between ICC_BPR1 and ICC_BPR1_S and ICC_BPR1_NS.
AArch32 System register ICC_BPR1 bits [31:0] (ICC_BPR1_S) are architecturally mapped to AArch64 System register ICC_BPR1_EL1[31:0] (ICC_BPR1_EL1_S).
AArch32 System register ICC_BPR1 bits [31:0] (ICC_BPR1_NS) are architecturally mapped to AArch64 System register ICC_BPR1_EL1[31:0] (ICC_BPR1_EL1_NS).
This register is present only when EL1 is capable of using AArch32 and GICv3 is implemented. Otherwise, direct accesses to ICC_BPR1 are UNDEFINED.
In GIC implementations supporting two Security states, this register is Banked.
ICC_BPR1 is a 32-bit register.
This register has the following instances:
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RES0 | BinaryPoint |
Reserved, RES0.
If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. For more information about priorities, see 'Priority grouping' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).
Writing 0 to this field will set this field to its reset value.
If EL3 is implemented and ICC_MCTLR.CBPR_EL1S is 1:
If EL3 is implemented and ICC_MCTLR.CBPR_EL1NS is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending on the values of HCR.IMO and SCR.IRQ:
HCR.IMO | SCR_IRQ | Behavior |
---|---|---|
0b0 | 0b0 | Non-secure EL1 and EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure EL1 and EL2 writes are ignored. |
0b0 | 0b1 | Non-secure EL1 and EL2 accesses trap to EL3. |
0b1 | 0b0 | Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure EL2 writes ignored. |
0b1 | 0b1 | Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 accesses trap to EL3. |
If EL3 is not implemented and ICC_CTLR.CBPR is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending on the values of HCR.IMO:
HCR.IMO | Behavior |
---|---|
0b0 | Non-secure EL1 and EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure EL1 and EL2 writes are ignored. |
0b1 | Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure EL2 writes are ignored. |
This field resets to an IMPLEMENTATION DEFINED nonzero value.
When the PE resets into an Exception level that is using AArch32, the reset value is equal to:
Where the minimum value of ICC_BPR0 is IMPLEMENTATION DEFINED.
If EL3 is not implemented:
An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.
Accesses to this register use the following encodings in the System register encoding space:
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1100 | 0b1100 | 0b011 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then UNDEFINED; elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then AArch32.TakeHypTrapException(0x03); elsif ICC_SRE.SRE == '0' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then R[t] = ICV_BPR1; elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then R[t] = ICV_BPR1; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then if EL3SDDUndef() then UNDEFINED; else AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then R[t] = ICC_BPR1_NS; else R[t] = ICC_BPR1; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then UNDEFINED; elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.IRQ == '1' then UNDEFINED; elsif ICC_HSRE.SRE == '0' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then if EL3SDDUndef() then UNDEFINED; else AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then R[t] = ICC_BPR1_NS; else R[t] = ICC_BPR1; elsif PSTATE.EL == EL3 then if ICC_MSRE.SRE == '0' then UNDEFINED; else if SCR.NS == '0' then R[t] = ICC_BPR1_S; else R[t] = ICC_BPR1_NS;
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1100 | 0b1100 | 0b011 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then UNDEFINED; elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then AArch32.TakeHypTrapException(0x03); elsif ICC_SRE.SRE == '0' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then ICV_BPR1 = R[t]; elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then ICV_BPR1 = R[t]; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then if EL3SDDUndef() then UNDEFINED; else AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then ICC_BPR1_NS = R[t]; else ICC_BPR1 = R[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then UNDEFINED; elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.IRQ == '1' then UNDEFINED; elsif ICC_HSRE.SRE == '0' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then if EL3SDDUndef() then UNDEFINED; else AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then ICC_BPR1_NS = R[t]; else ICC_BPR1 = R[t]; elsif PSTATE.EL == EL3 then if ICC_MSRE.SRE == '0' then UNDEFINED; else if SCR.NS == '0' then ICC_BPR1_S = R[t]; else ICC_BPR1_NS = R[t];
26/03/2024 09:49; 67c0ae5282a7629ba0ea0ba7267b43cd4f7939f6
Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.