PMCR, Performance Monitors Control Register

The PMCR characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters implemented, and configures and controls the counters.

Configuration

AArch32 System register PMCR bits [31:0] are architecturally mapped to AArch64 System register PMCR_EL0[31:0].

AArch32 System register PMCR bits [10:0] are architecturally mapped to External register PMU.PMCR_EL0[10:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCR are UNDEFINED.

Attributes

PMCR is a 32-bit register.

Field descriptions

313029282726252423222120191817161514131211109876543210
IMPIDCODENRES0FZORES0LPLCDPXDCPE

IMP, bits [31:24]
When FEAT_PMUv3p7 is not implemented:

Implementer code.

If this field is zero, then PMCR.IDCODE is RES0 and software must use MIDR to identify the PE.

Otherwise, this field and PMCR.IDCODE identify the PMU implementation to software. The implementer codes are allocated by Arm. A nonzero value has the same interpretation as MIDR.Implementer.

Use of this field is deprecated.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.


Otherwise:

Reserved, RAZ.

IDCODE, bits [23:16]
When PMCR.IMP != 0b00000000:

Identification code. Use of this field is deprecated.

Each implementer must maintain a list of identification codes that are specific to the implementer. A specific implementation is identified by the combination of the implementer code and the identification code.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.


Otherwise:

Reserved, RES0.

N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b00000-0b11111. If the value is 0b00000, then only PMCCNTR is implemented. If the value is 0b11111, then PMCCNTR and 31 event counters are implemented.

In an implementation that includes EL2:

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bit [10]

Reserved, RES0.

FZO, bit [9]
When FEAT_PMUv3p7 is implemented:

Freeze-on-overflow.

Stop event counters on overflow.

In the description of this field:

FZOMeaning
0b0

Do not freeze on overflow.

0b1

Affected event counters do not count when PMOVSR[(PMN-1):0] is nonzero.

The counters affected by this field are:

Other event counters are not affected by this field.

When PMCR.DP is 0, PMCCNTR is not affected by this field.

The reset behavior of this field is:


Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

LP, bit [7]
When FEAT_PMUv3p5 is implemented:

Long event counter enable.

Determines which event counter bit generates an overflow recorded by PMOVSR[n].

In the description of this field:

LPMeaning
0b0

Affected counters overflow on unsigned overflow of PMEVCNTR<n>[31:0].

0b1

Affected counters overflow on unsigned overflow of PMEVCNTR<n>[63:0].

The counters affected by this field are:

Other event counters and PMCCNTR are not affected by this field.

PMEVCNTR<n>[63:32] is not accessible in AArch32 state.

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED whether this field is read/write or RAZ/WI.

The reset behavior of this field is:


Otherwise:

Reserved, RES0.

LC, bit [6]

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.

LCMeaning
0b0

Cycle counter overflow on increment that causes unsigned overflow of PMCCNTR[31:0].

0b1

Cycle counter overflow on increment that causes unsigned overflow of PMCCNTR[63:0].

Arm deprecates use of PMCR.LC = 0.

The reset behavior of this field is:

DP, bit [5]
When (FEAT_PMUv3p1 is implemented and EL2 is implemented) or EL3 is implemented:

Disable cycle counter when event counting is prohibited.

DPMeaning
0b0

Cycle counting by PMCCNTR is not affected by this mechanism.

0b1

Cycle counting by PMCCNTR is disabled in prohibited regions and when event counting is frozen:

  • If FEAT_PMUv3p1 is implemented, EL2 is implemented, and HDCR.HPMD is 1, then cycle counting by PMCCNTR is disabled at EL2.
  • If FEAT_PMUv3p7 is implemented, EL3 is implemented and using AArch64, and MDCR_EL3.MPMX is 1, then cycle counting by PMCCNTR is disabled at EL3.
  • If FEAT_PMUv3p7 is implemented and event counting is frozen by PMCR.FZO, then cycle counting by PMCCNTR is disabled.
  • If EL3 is implemented, MDCR_EL3.SPME or SDCR.SPME is 0, and either FEAT_PMUv3p7 is not implemented, EL3 is using AArch32, or MDCR_EL3.MPMX is 0, then cycle counting by PMCCNTR is disabled at EL3 and in Secure state.

The conditions when this field disables the cycle counter are the same as when event counting by an event counter PMEVCNTR<n> is prohibited or frozen, when either EL2 is not implemented or n is less than HDCR.HPMN.

For more information, see 'Prohibiting event and cycle counting'.

The reset behavior of this field is:


Otherwise:

Reserved, RES0.

X, bit [4]
When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

XMeaning
0b0

Do not export events.

0b1

Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another device, for example to an OPTIONAL trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

The reset behavior of this field is:


Otherwise:

Reserved, RAZ/WI.

D, bit [3]

Clock divider.

DMeaning
0b0

When enabled, PMCCNTR counts every clock cycle.

0b1

When enabled, PMCCNTR counts once every 64 clock cycles.

If PMCR.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR.D = 1.

The reset behavior of this field is:

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

CMeaning
0b0

No action.

0b1

Reset PMCCNTR to zero.

Note

Resetting PMCCNTR does not change the cycle counter overflow bit. If FEAT_PMUv3p5 is implemented, the value of PMCR.LC is ignored, and bits [63:0] of the cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset.

In the description of this field:

PMeaning
0b0

No action.

0b1

If n is in the range of affected event counters, resets each event counter PMEVCNTR<n> to zero.

The effects of writing to this bit are:

Note

Resetting the event counters does not change the event counter overflow bits.

If FEAT_PMUv3p5 is implemented, the values of HDCR.HLP and PMCR.LP are ignored and bits [63:0] of all affected event counters are reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

In the description of this field:

EMeaning
0b0

Affected counters are disabled and do not count.

0b1

Affected counters are enabled by PMCNTENSET.

The counters affected by this field are:

Other event counters are not affected by this field.

The reset behavior of this field is:

Accessing PMCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b10010b11000b000

if PSTATE.EL == EL0 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' || (IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.UEN == '1')) then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else R[t] = PMCR; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else R[t] = PMCR; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else R[t] = PMCR; elsif PSTATE.EL == EL3 then R[t] = PMCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b10010b11000b000

if PSTATE.EL == EL0 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' || (IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.UEN == '1')) then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCR_EL0 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMCR = R[t]; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMCR = R[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMCR = R[t]; elsif PSTATE.EL == EL3 then PMCR = R[t];


26/03/2024 09:49; 67c0ae5282a7629ba0ea0ba7267b43cd4f7939f6

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.